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Anmoramaa—/[aH aHAJU3 BIMAHWA IIONEPEYHOro IIOTOKA MAacCh HA Temaoo0MeH npu
JAMOHAPHOM OOTEKAHMHM BIKHON KANMUIAPHO-TIOPMCTON ILIACTMHH.  YCTAHOBIEHH
3aKOHOMEPHOCTH TEILIO-U MACCOOOMEeHa NMPM MCTIAPEeHHH HUAKOCTH U3 KANMINIAPHO-IIOPUCTHIX
tex. Ilokasamo, 4To B CIyuyae yIrIyOneHUs IIOBEPXHOCTH MCHIAPEHHSA KOIYOUIMEHTE
TermmooOMena 0oiblie IO CPABHEHMIO ¢ KodQQUIueHTAMUI Tena000MeHa NpHM MCHAPEHHM HA

0BEPXHOCTH TEJ.

HaGmogaempie B HEKOTOPHX pafoTax 10 HCHAPUTENIBHOMY TOPHMCTOMY OXJIa:KIEHUIO

yMenplieHus KoapPuIuenTa TemI00GMEeHA C yBelHYeHMeM WHTEHCUBHOCTH HCHIAPeHIH

06BACHAITCA METOXUKOM pacuéTa.

NOMENCLATURE Dimensionless numbers

thermal diffusivity coefficient Re;, local Reynolds number
(a = kepp); [Rez = (wazx/v)];

specific heat, at constant pressure; Pe,, local Peclet number (Pe; = (wex/a)];
heat-transfer coefficient; Pe;, local Peclet number relative to mean
vapour diffusion coefficient in moist integral velocity W, in a boundary layer
i, (Pe; = Wwex/a);
evaporation intensity or mass flow Nug, local Nusselt number [Nu; = (hzx/k)];
density; ' i Se,  Schmidt number [Sc = (v/D)];
heat conduction coefficient; Pr,  Prandtl number [Pr = (v/a)];
characteristic body dimension; Gu, Gukhman number (Gu = T, — Ty/Ty).

total pressure of moist air (p = p; + p,

= const.); Subscripts and Superscripts
heat flux; a, surrounding medium (moist air);
latent heat; b, adiabatic saturation state;
temperature °C; e, heat transfer with evaporation;
absolute temperature °K; S, surface;
air velocity; X, local value depending on x co-ordi-
boundary-layer thickness; nate;
dynamic viscosity coefficient; 1, vapour;
kinematic viscosity coefficient 2, dry air;

(v=m/p); solid body;
density; 0, heat transfer without evaporation.

relative vapour concentration

. (P10 = p1/P);
time;
distance of evaporation surface from
body surface;
relative air humidity.

INTRODUCTION

HEeAT and mass transfer with liquid evaporation
from capillary-porous bodies is not only of
theoretical interest but of great practical import-
ance in engineering.
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A heat- and mass-transfer process between a
body surface and the surrounding medium is
inseparably linked with that inside a capillary-
porous body.

Up to the present day opinion is divided on
the subject of the physical mechanism of heat
and mass transfer and also on the qualitative
effect of mass transfer upon heat transfer.

On the basis of the theory of gas injection
into a boundary layer through a porous wall
some investigators consider that with liquid
evaporation the heat-transfer coefficient decreases
with an increase in evaporation intensity and
with vapour condensation it increases with
condensation.}

In the first case a transverse mass flow 1s
directed in an opposing sense to the heat flow
and in the second case these flows have the same
direction.

The boundary-layer thickness then increases
with evaporation (boundary layer “‘swells™") and
this leads to a decrease in the heat-transfer
coefficient. With vapour condensation a different
process takes place which leads to an increase
in the heat-transfer coefficient with condensation
rate.

However, experiments on liquid evaporation
from an open surface, made by Nesterenko [1],
Sergeyev [23] and other investigators, showed
that heat-transfer coefficients with evaporation
are greater than h., as compared with those
without evaporation under other equal hydro-
dynamic conditions and with the same tempera-
ture differences. This difference (A, h6)
increases with a decrease in relative air
humidity.

When drying moist materials, the heat-
transfer coefficients are greater than those of a
dry body [3-6].

In the process of transpiration cooling the
results differ. In [7] the heat-transfer coefficients
increase with evaporation rate whilst in another
case, on the contrary, they decrease [8].

In the present paper an attempt is made to
explain these contradictory results on the basis
of the theory of submerging evaporation surface
in capillary-porous bodies.

+ It is assumed that heat necessary for evaporation is
transferred to a body from the heated air by convection.
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POROUS COOLING WITH GAS INJECTION INTO
BOUNDARY LAYER

Porous cooling by gas injection nto a
boundary layer was calculated in detail by
Eckert [9].

This calculation is based on the solution of a
system of differential heat- and mass-transfer
equations for a flat porous plate in a laminar
boundary layer of a binary gas mixture.

The system of differential equations v as
follows:
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In this case thermal diffusion (the Soret effect)

Wy - - 4 pi
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and diffusion heat conduction {the Dufour

effect) are neglected as they are small.
Boundary conditions are as follows:

atv 0w --0,wy - Wl 0 L pre s (D)

aty - “.owy Waa 07 Tas Py Proa- (6)

Moreover, it was assumed that the hnear
transverse velocity changed along a surface
{1n x-direction) in inverse proportionality to y A,

Calculation results for a mass flow of injected
gas which is directed from a body surface
(analog of evaporation process) are given in
Fig. 1.

From Fig. | it is evident that heat- and mass-
transfer coefficients decrease with an increase
in parameter Z.

W,

W o h
l - Wa \ (RE;) [

o \ (R({r). (7)

where j, - pwy is the mass-transfer rate in the
direction of a normal to the wall surface (in
y-direction). Hence, the heat-transfer co-
efficient decreases with an increase in the
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FiG. 1. Relation between h/h, and parameter z with inert gas injection (Pr = 0-7) into a
boundary layer according to Eckert’s data.

transverse mass-flow rate. With Z = 0-05 the
ratio h/h, is equal to 09 (see Fig. 1)
Consequently, with Z = 0-05 the decrease in
the heat-transfer coefficient, h, compared with
that for a dry body, 4,, is 10 per cent. A decrease
by a factor of two (h/h, = 0-5) corresponds to
Z =03,

If the liquid-evaporation process is con-
sidered to be the analog of a process of gas
injection into a boundary layer, then under
adiabatic evaporation conditions the parameter
Z may be presented in another form. With
convective heat transfer, evaporation intensity
i is equal to:

h, k
jl Jr— rf (ta — tb) = X;' Nux(\’a - ’b)-

®)

When a plate is in a laminar flow of moist air,
the local Nusselt number, Nu., is equal to:

Nﬂx = :‘iz’\/Rex

where A, is the constant.
Then, the parameter Z will be:
Ax CpAt AZ cﬁTa
=B o P 7 0%
Consequently, the parameter Z is independent
of the air velocity but it depends on a psychro-

&)

metric difference A#(At =tz — ) or on the
Gukhman number.

Let us do some approximate calculations for
conditions: % = 30°C, »r 579 keal/kg,
Az = 033, Pr = 07, Then for Z = 0-05 the
temperature drop will be equal to Az = 260°C.
Consequently, only at the temperature difference
of Atz 260°C will a decrease in the heat-transfer
coefficient be of order 10 per cent.

Similar results were reported in [8] when a
porous plate was located in a flow of heated air.
In these experiments the evaporation rate did
not exceed 22-7 kg/m®h. The Reynolds number
ranged from 10* to 2:10° and air temperature,
from 18 to 140°C. Evaporation occurred under
adiabatic conditions. The temperature difference
did not exceed 80°C. Hence, the transverse
mass flow could not influence the heat-transfer
coefficient greatly.

However, the authors established the following
relation for the mean Nusselt number:

Af\ —0-2
Nu = 0-00455 Re0s (‘i”r’) .

(10)

Thus, the heat-transfer coeflicient decreases by a
factor of more than three.

Although the analysis of [8] is of a tentative
character, since water evaporation from the
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porous plate occurred in a turbulent flow, the
decrease in the heat-transfer coefficient. however,
with increase in the temperature difference, Ar.
proceeded due to other reasons which will be
considered below.

TRANSPIRATION COOLING

The Krischer method [10] is used to analyse
a complex heat-transfer problem with transpira-
tion cooling. The essence of this method lies
in the following.

If the influence of transverse mass flow is
neglected, then the differential heat-transfer
equation for a flat plate in a laminar boundary
layer and at constant transfer coefficients may
be written thus (see Appendix):

ir{x.)) $Hix.y)

we oo, —a
Y ¢ v

(11)

Boundary conditions are taken in the form:

at y=- 0, #(x,0) -- ;- const. (12)
at x = 0,10y — 17, const. (13)
at y-- w, Hx,oc) - 1, -= const.  (14)

The flow velocity, wy, is a function of the co-
ordinates; it is determined from equations (1-2).
Following the Krischer method, w, is assumed
to be constant and equal to the mean flow
velocity in a boundary layer (w, = W, -~ const.).

In actual processes the velocity is constant
only when a body is in a flow without friction,
i.e. at a very small coefficient of internal friction.

In case of viscous liquid the assumption

(wy = Wy == const.) is a certain method for
solving a heat-transfer problem in a boundary
layer.

When an infinitely long plate is placed in a
flow (I = x - =), the solution of differential
equation (11) at boundary conditions (12-14)
has the form:

1(xy) —ts y\/(ﬂ)x))
N e e
The local Nusselt number., Nu,, is equal to
hex X { 1(x,0
Nux:——l—x—\‘ ' £1(x.0) (16)

K i)
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Differentiating solution {15} with respect to
and assuming y == 0, we obtain:

{ (VY !
oo S5
A d \

The mean Nusselt number on a surface is

!

Nu - ! [ —{Nu,r dx T\ (Pe),
U P T

where Pe -~ (Wglja) is the mean Peclet number

based on the mean velocity.

To compare the result obtained with the
known formulae for Nu for a plate in a laminar
flow, it is necessary to determine ..

1f the velocity profile w,()) is assumed to be a
cubic parabola, then the mean velocity we is
equal to

Wy == Wg ;

[ 5

(1 S . ()
5 L we(1) dy Sm )]
Then for humid air (Pr -=0-7) we have

)

Nu —= '\“;; . 0625y (Pe) = 0-74 4/ (Re). (20)
This result differs from the known formula for a
flat plate only by 20 per cent, Nu == 0-60 +/(Re).

Thus, the assumption of constant velocity,
wy, when solving equation ([1) yields satis-
factory results.

Our problem on transpiration cooling may
be presented as follows (see Fig. 2).

w, ()
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FiG. 2. Diagram of heat-transfer calculation with
deepening of evaporation surface.



HEAT AND MASS TRANSFER WITH TRANSPIRATION COOLING

The differential heat-transfer equation for a
boundary layer remains just the same [see
equation (11)].

Boundary conditions are:

atx =0:40,y) =ty aty = — £, t(x; — €) =

= fp = const. (21)

at y—> o0 t(x, 0) =1, (22)
21(0,x) o1(0,x)

at = —§, - k = — k' . (23

¥ ¢ 2 5 @

In this case the temperature on the evaporation
surface (y = — £) is assumed to be equal to the
wet-bulb temperature. Owing to the small
thickness of the boundary layer on the body £
the temperature distribution is assumed linear.
Then boundary condition (23) may be written
thus:

o1(0,x)
~ %
where H = (k'/k£) is some quantity analogous
to a relative heat-transfer coefficient.

The solution of differential equation (11) at
boundary conditions (21-23) has the form

t();;i’)__“.tb_’!’ = erf [ZL\/L(ZB]
N
Ve

24X YV Wz
+ exp (Hy + H e erfc Iv(ax) +
Solution (15) is obtained from that of (24) as a
particular case.

If evaporation proceeds on a body surface
(£ = 0), then H — o and the second term of the
right-hand side of solution (24) will be equal to
zero.

Temperature on a body surface, #[t; = #(0,x)]
will not be constant and changes along the
X-axis.

t():;ol —t;—t? = exp <H2 g—:) erfc ( J %?) (25)

Near the edge of a plate (x = 0) temperature of a
body surface, 7, is equal to that of air (¢ — 1)
and at a considerable distance from the edge
(x = oo) the temperature of a body surface is

4 H[H0%) — ] =0 (23a)

563

equal to the wet-bulb temperature (5 — ).
Consequently, the temperature differ-
ence Atf(At = t, — t;) changes from zero
near the plate edge to a constant value
(ta - tb).

This is a very important fact which defines heat
and mass transfer when submerging the evapora-
tion surface deep into a body.

If evaporation occurs on a body surface, then
under adiabatic conditions temperature of the
body surface is constant and equal to the
wet-bulb temperature.

From the theory of heat transfer it is known
that if temperature difference increases along the
flow, then the heat-transfer coefficient is greater
than that with constant temperature difference.

Consequently, when deepening an
evaporation surface, the heat-transfer
coefficient is greater as compared with
that with evaporation on a surface.

If to a first approximation it is assumed that
the heat-transfer coefficient with evaporation
on a body surface is equal to that of a dry body,
then with transpiration cooling, when deepening
the evaporation surface, the heat-transfer co-
efficient will be greater in comparison with that
of a dry body. Consider it in detail.

The local Nusselt number, Nug, is equal

X ot(x,0) —
0] oy~ VPedK

exp K2 erfc K(1 — exp K2 erfc K] (26)

where K is a dimensionless parameter
Hx Kt

Nuz =

ax\ 038
Designate
AK) = +/(m) Kexp K2 erfc K, (28)
then we have
Ne V/(m) Nug AK) 29)

V(P 1 — 1KV@If(KY

(17) is obtained from (29) as a specific case.
If evaporation occurs on a body surface (¢ = 0,
K = o), then N = 1, since f(K) = 1.

Thus, the dimensionless quantity N charac-
terizes a relative increase in Nu, with liquid
evaporation from a capillary-porous body at
some depth £, as compared with evaporation
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on a body surface. In Fig. 3, N is plotted versus
K, from which it is seen that N decreases with an
increase in K (at K — = N -~ 1)

Over a range of values of K from 0-1 to 50
(0-1 K - . 5:0) the relation N ~= F(K) may be
approximated by the following formula

N 131K o (30)

From the theory of liquid transfer in capillary-
porous bodies it is known that for the first
approximation ¢ is proportional to a relative
psychrometric difference (Ty - Tn)/Ta-

|

17 Tf-—“ A A —— —
f‘e e e} e+ el e e
1-5 SN Y —
N g} e —— e St IR g ~‘~J
. L/ N N
f
|
B e e
\\.
i1 — e e e
0 2 3 4
K
Fia,. 3. Relation between coetficient N and parameter

K

Then the dimensionless parameter K will be
inversely proportional to (T, Ty)/7T, or to the
Gukhman number (K ~ 1/Gu). Hence, it
follows that N will be directly proportional to
Gu 3N ~ Gu"12), This obtains in some works
on heat transfer with drying [2-5].

It is of interest to determine ¢ roughly. For
porous ceramics used in [2] & == 0-2 kcal/mh degC
and Re = 6-10% Pr — 0:7. Then, for x - 20 mm
K = 1'5and £ = 0-5 mm. In this case according
to the plot in Fig. 3 the coefficient N —= 1-25,
which corresponds to an increase in the heat-
transfer coefficient, /., by 25 per cent as compared
with that for a dry body (Jie/hs = 1-25) if heat
transfer with evaporation on a body surface is
considered to be identical with that of a dry body.

For K = 025, § = 3 mm and N = 135,
Hence, the heat-transfer coefficient, /., 18
approximately greater by 55 per cent than /.
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It is quite natural that at small values of ¢ the
temperature of a body surface cannot be
measured in practice. Thermocouples embedded
on a *‘surface™ of a body in fact show the wet-
bulb temperature 1. The heat transfer coefficient
is, therefore, calculated as the relation of 4
heat flow, g, to the psychrometric difference
{ta .

q

12{ -
o In -1y

(31

In this case the local Nusselt number, Niup.
will be

hapx X ct{x,0)
P - - . 1
Nt k {ln p} 3! (32}
After simple transformations we have:
() Nuzp -
A K (33)

A (Pevlf/)
where Np is a coefficient showing a relative
change in Nugp and, consequently, /1y, due to the
deepening of an evaporation surface.

From the plot Ny = f{K) depicted in Fig. 4
one can see that the coefficient K increases with

Np.

09

08
/vff(f()

(N

N, 05

04

/
[
Al |
# ]

0+ | SN SO

Q 4 2 3

Fio, 4. Relation between coefficient A and parameter
K.
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Since K is inversely proportional to the
Gukhman number, Nug will decrease with an
increase in Gu and this is reported in [8].

Over a small range of change in K the relation
Np = f(K) may be represented by the formula

Ny = BK™ (34

where B and m are constants (I > m > 0).

Over the range (0-3 < K < 1:5) B = 0-73 and
m = 0-46. In the range (1-5 < K << 5) B = 0-80
and m = 0-15 (see Fig. 4). Hence, in the range
(03 < K < 1-5) we have

No =073 K% — B, Gu 91 (35)

where B, is the constant.

This formula by its structure is close to
equation (10). It may be noted that the authors of
[8] treated their experimental data using the
Gukhman number. After this they obtained the
following dependence:

Nu
Reos = 0-00695 Gu—9°%, (36)

It should be noted that the comparison of the
above formulae is of a conditional character,
since ¢ depends on the capillary-porous structure
of a body, its physical-chemical properties and
in general case is a function of the parametric
number (7,/Ty). However, equations (33), (34),
(10) and (36) cogently show that in [8] evapora-
tion proceeded at some depth from a body
surface. Decrease in the heat-transfer coefficient
due to increase in the evaporation rate, observed
in experiments, is explained not by the effect of a
transverse mass flow on boundary-layer thick-
ness but by the method of calculation of the
heat-transfer coefficient according to (31).

Data obtained in [11] may be cited as a second
example. With drying of gypsum plates (200 x
50 x 25 mm) at air temperature t, = 33°C,
relative humidity ¢ = 20 per cent and air
velocity from 1 m/s to 5 m/s (0:9 x 10t < Re <
35 » 10% the following formulat may be
obtained

Nu = 725 Re"4, (37)

The value of the exponent of Re may be explained

t Value, equal to /s, where s is the evaporation surface
(/v 5) was taken as the characteristic dimension /.
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by the effect of the parameter K. Over the range
(1I'5 < K < 50) the local number, Nuyp is
equal to

l H 015

. P 0-43 | R 0-43. 38
Vi () Rt G®
The exponent of Re, (n = 0-43) is close to that
of Re in (37).

Nugy =

EXPERIMENTS ON TRANSPIRATION COOLING

At the Heat and Mass Transfer Institute of the
B.S.S.R. Academy of Sciences, Shulman carried
out experiments on transpiration cooling [12-13].
A ceramic hollow cylinder (250 mm in height
and 22 mm in internal radius) in the shape of a
tumbler is taken as a sample.

A porous ceramic possesses a monocapillary
structure (capillary radius, corresponding to a
maximum of a distribution curve for pores, is
equal to 0-9 ), its total porosity is 70 per cent.
Experiments were calculated at air temperatures;
70°C, 100°C and 130°C. The air velocity in the
wind tunnel was from 6:0 to 150 m/s. Reynolds
numbers ranged between 2-10* and 7-10%.

Two grooves (2:5 mm in depth and 2 mm in
width) were made on the internal wall of the
tumbler. The distance between their axes was
equal to 14-5 mm. A cardboard moisture-proof
small boat was inserted into these grooves and
fixed by glue. After heating and drying, the
sealing of the boat and a great cavity of an
experimental body was checked. Thermo-
couples were imbedded along the external
contour and along the generating line of the
porous cylinder to measure body temperature.

The lower semi-spherical part of the tumbler
was soaked with water-proof varnish. Therefore,
water evaporation proceeded only from the
lateral cylinder side. To approach experimental
conditions to a plane problem, the porous
cylinder had a lengthening device made of
cardboard. Water was fed into the boat and
glass cavity from measuring burettes with scale
division equal to 0-05 mm. The experimental
body (porous cylinder) was placed in a wind
tunnel, described in [5], normal to the air flow.
The cylinder was filled with heated water. A
specific heat flow for the given portion of the
cylinder surface (g = rj;) was determined by
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water rate in the boat. The boat axis is estab-
lished at a given distance from the front critical
point by turning a porous cylinder at a certain
angle according to the limb. Measurements were
made over the range of the angle ¢ between 0
and 180° through each 15° starting from the
front critical point. Evaporation occurred under
adiabatic conditions and the thermocouples,
imbedded near the surface of the porous
cylinder, showed temperatures equal to that of
the wet-bulb (T T)). The heat-transfer
coefficient was calculated {rom (36). 1.c. the
coefficient of heat transfer from air to an
evaporating surface through the air boundary
layer and a body layer was determined.
Experimental values of the parameter Z
depending on the angle 6 are shown in Fig. 5.
From Fig. 5 one can see that it does not exceed
0-04 (Z > 0-04). Hence the influence of a trans-
verse mass flow on heat transfer is negligible.
For all the temperatures (70 . 100" and 130°C)

©-05

0-04

0-03

d

—— to
0-02 . =~ i
+ ;
o_ < !
7G°C 3 P!
- ——
*o
001
0] 20 40 60 80 100
&

Fii. 5. Relation of parameter - and angle ¢ for
various temperatures of air flow.
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the relation between the local numbers Nug, and
Re; are close to a parabolic one, i.e. Nugp is
directly proportional to v Rez. The experimental
data, treated as a plot of Nuzp/+/Re; versus Gu,
showed that Nuy»/4/ Rez is inversely proportional
to Gui.

Fig. 6 gives the relation between N,y Res.
Gu~9* and the angle 4.

Designate the dimensionless co-ordinate .«
by ¥*(x* - x/d) where x is the arc length of the
external cylinder contour with the central angle
. calculated from the front critical point
(x - - 1dB). d is the cylinder diameter.

Then, experimental data depicted in Fig. 6
are described by the following empirical formula:

Nugy ~ 2:0 [exp (--2:46 x*) + 0-2exp (--55 x#)]
ViIRe)Gu L (39

From formula (39) it follows that the coeflicient
hep decreases with an increase in the Gukhman
number. The heat-transfercoefficient, i,.increases

| I
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F1G. 6. Relation between local Nusselt number and
and angle 9.
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with Gu. There is a simple relation between the
coefficients h; and hzp:

1 1 ¢

b e R (“0)

To the first approximation the depth of
position of the evaporation surface ¢ is propor-
tional to Gu but the coefficient 4, decreases with
an increase in Gu.

In Fig. 7 the average Nusselt numbers, Nuy,
over the cylinder surface for three temperatures
are plotted versus Re. Values of Nu, for dry heat
transfer [14] are also given in Fig. 7. From Fig. 7
it follows that the Nusselt numbers for dry heat
transfer coincide with those for moist heat
transfer at an air temperature of 100°C (Nu, =
Nup). At air temperature 130°C the values are
smaller and at temperature 70°C are greater, as
compared with data in [14]). More intense heat
transfer between a moist porous body and air
flow is explained by other reasons. Volumetric
evaporation connected with the dynamic
character of sorption and desorption processes is
one of the reasons for increased heat and mass
transfer.

The essence of this hypothesis lies in the fact

300 /AX
x/zV e

200 X!
T e
/;x .A/

/ e

o
N 100 '.7'
s 80 A
60
o1
a2
40 ® 3
4
20
10 2 4 6 8 O 2
Re x10*

Fic. 7. Relation between mean Nusselt number Nu,

and Re at temperature of air flow: 1. 70°C, 2. 100°C,

3. 130°C, 4. dry heat transfer according to Kruzhilin
and Schwab’s data [14].
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that fine liquid drops enter a boundary layer. A
process of nucleate vapour condensation and
interaction between an air flow and body
surface is the basic reason of droplet separation
from a body surface. According to the dynamic
adsorption theory [15] the evaporation process is
a dynamic process of desorption and sorption.
Liquid molecules do not only leave the evapora-
tion surface but continuously return back to it,
forming condensation nuclei. The evaporation
rate is proportional to the difference between
molecular flows leaving the surface and returning
back to it. Fedyakin's investigations [16]
showed that condensation does mnot occur
uniformly along a body surface but on some
portions (nuclei). In addition, incomplete wetting
of a body surface proceeds over a condensation
portion. On this portion drops are formed
which are carried away by air flow into a
boundary layer as they are less firmly connected
with the body. The nuclear condensation and
evaporation process breaks the structure of the
boundary layer adjacent to a wall and this also
leads to intensification in heat and mass transfer.,

Evaporation of drops in a boundary layer is
called volumetric evaporation; it is a vapour
source and a negative heat source in the equations
of heat and mass transfer of a boundary layer.

With volumetric evaporation the right-hand
side of equation (4) should have the additional
term, I,, where I, is the volumetric vapour
source (kg/m?h). The right-hand side of equa-
tion (3) should embody the new term rf, which
is a heat sink (kcal/m3h). In [17]} it is reported
that volumetric evaporation in a boundary layer
is characterized by the Gukhman number. Thus,
the Gukhman number characterizes not only
the effect of deepening an evaporation surface
inside the body upon heat and mass transfer in
a boundary layer but also upon a process of
volumetric evaporation of drops in a boundary
layer.

From Fig. 7 it follows that at an air tempera-
ture 70°C heat-transfer intensification due to
volumetric evaporation will be considerably
greater, as compared with the effect of the
deepening of the evaporation surface (value ¢
is small). Values of Nup are therefore greater
than the corresponding values of Nu,. At a
temperature of 100°C the influence of these two
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effects is approximately the same. Therefore,
the numbers Nu, and Nup coincide. At a tempera-
ture of 130°C the effect of the deepening of the
evaporation surface suppresses that of ordinary
evaporation, which leads to the relation
Nup ~< Nup.

The basic conclusion of our work is as follows:
heat and mass transfer of capillary-porous
bodies within a surrounding medium is the
interconnected heat- and mass-transfer process in
a boundary layer of air and in that of a capillary-
porous body. This process may be studied with
advantage provided that it is considered as a
single whole, as the whole complex of phenomena
in their interaction.

Neither conclusions, based on analogy, nor
quantitative laws based on the principle of
additivity of relations, corresponding to practical
phenomena, are possible. Correct quantitative
relations should correspond to the actual
process.
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HEAT AND MASS TRANSFER WITH TRANSPIRATION COOLING

APPENDIX
Equation (11) is a particular case of equation
(3) when the transverse velocity is zero (w, = 0).
Equation (3) may be solved if we assume that
Wz = Wg = const. and wy = js/p = const. Heat
transfer due to diffusion is neglected. The
solution of equation (3) with boundary con-

ditions (12-14) is of the form

— fw
fx0) — it _ 3 {erfc[ v (Wz) Wy

fe — 15 2V(@x)” " 2a
Jey ()
e

From the above solution the local Nusselt num-
ber is obtained

1 — Pe?
Nuiy = Y V/(Pey) exp (““4176;1)
— 3 Pt erfc [} Pelj+/(Per)), (1D)
where

Pe* = M__.__wyx —jii:

x a pa

is the local Peclet number for transverse transfer.
If the effect of convective heat transfer along y is
neglected (Pe, = 0), from equation (II) formula
{17) is obtained. If the evaporation rate does not
exceed 20 kg/m?h ( j; < 20), then for a wet plate
in a laminar air flow (Pr = 0-7) Pe; < 25 when
Re < 8-10% Hence the second term of formula
(I1) is less than 5 per cent in relation to the first
term, and the value of exp (—Pe?/ﬂ"zz) is
practically unity.

The solution of equation (3) with boundary
conditions (21-23) is of the form

(0,9) — 1o _[H — (w/2)] *
[H — (wy/a)]

H
X exp [(H2 — —?’) «J,E:: -+ Hy}

fa — 5

L aim

20
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(11D

B yv’(ﬁfz)} _ Hexp [(w/a) y]
2v/(ax)j  2[H — (wfa)]

care [P /()43 /()]

From equation (ITI) the solution of equation
(24) is obtained if we assume that wy = 0.

From eguation (III) the following formulae
are obtained

. N ux‘\/(ﬂ'}
N =)
oK, B) — } /() Berfc } B

~ {1 = (B/K)] — (I/Ky/m) $(K, B)
+ 3 (B/K) erfc } B}

(V)

where
#K, B)y=[l — 3 (B/K)]v(m K
X exp (K? — BK)erfc (K — 1 B) (V)

_ Hx _ P owpx
CV(Pea) T A(Pe) V(aw) v
The value Ny is
. V() Ntz _ 1

Ny = V(Pey [ —(BIK)]

(K, B) — v/ (m) Bexfc § Bl (VID)
If the effect of transverse mass transfer is neg-

lected (B = 0), from formulae (IV) and (VII) we
obtain formulae (29) and (33) respectively since

#(K, 0) = +/(mK exp K*® erfc K = f(K). (VIIT)

When deepening of the evaporation surface does
not occur (£ = 0, K = c0), we obtain from
formulae (IV) and (V)

2
N = Ny = exp (—-— %) — $+/(m)Berfc § B{IX)
i.e. we obtain formula {I) since

[$(K, B)ly . = exp (—- f?)

Over the range of K(0-5 < K < 5), the above
values of Re and the evaporation rates j; the
value of £ — (B/K) < 0-06. Thus for approxi-
mate calculations which are sufficient for en-
gineering practice the effect of transverse mass
flow may be neglected.
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Abstract—The effect of transverse mass flow on heat transfer in a moist capillary-porous plate with
laminar flow is analysed. The laws of heat and mass transfer with liquid evaporation from capillary-
porous bodies are established. It is shown that when an evaporating surface is submerged heat-transfer
coefficients are greater than those with evaporation from body surfaces.
Decrease in the heat-transfer coefficient with evaporation intensity, reported in some works on
transpiration cooling, can be explained by the methods of calculation,

Résumé—On a étudié 'effet d’une injection transversale sur les échanges thermiques d’une plaque a
porosité capillaire, humide, placée dans un écoulement laminaire. Les lois du transport de masse et de
chaleur avec évaporation ont été établies. Les coefficients de transmission de chaleur sont plus grands
lorsque la surface d'évaporation est incluse que lorsque I'évaporation se fait a la surface du corps.
L accroissement du coefficient d'échange thermique avec I'intensité de I'évaporation, noté dans
quelques travaux sur le refroidissement par injection, peut s’expliquer par le calcul.

Zusammenfassung—Der Einfluss eines Massenquerstroms aufl den Warmeiibergang an einer feuchten
kapillarpordsen Platte bei Laminarstromung wird analysiert. Es werden Gleichungen eingefiihrt fur
den Wirme- und Stoffiibergang an porosen Kérpern bei Verdampfung von Fliissigkeit. Die Wérme-
tibergangskoeffizienten an einer in die Fliissigkeit vollstindig cingetauchten, dampfbitdenden Ober-
flidche sind grosser als die. nichteingetauchter dampfbildender Oberflachen.
Dhe Vergrosserung des Wirmeiibergangskoeffizienten mit der Verdampfungsintensitdt, von der in
Arbeiten iiber Schwitzkiihlung berichtet wird, lasst sich an Hand der Rechnung erklaren.



