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AnnOTaqnll-flaH aHaJnI3 BJIHHHIIFI nonepesHor0 IIOTOKa MacchI Ha TennOO6MeH npn 
JIaMIIHapHOM 06TeKaHHII BJIamHOti KaIIIIJIJIspIIo-IIopIIcTol% IIJIaCTIIHbI. YcTaHoBneHbI 
3aKOHOMepHOCTHTeIIJIO-IIMaCCOO6MeHa npll IICnapeHlIH HEH,I&KOCTnII3 KaIIIIJIJIIIpIIO-nOpIICTbIx 
TeJI. &Ka3aHO, 9TO B CJIysae ymy6neIwI IIOBepXHOCTII IICnapeHHR K03$&W'IeHTbI 
TeIIJIOO6MeHa 6onbIne n0 CpaBHeHEIH) C K03@@IuHeHTaMH TeIInOO6MeHa npll IICIIapeHIIII Ha 
IIOBepXHOCTI4 TeJI. 
HaGnIonaeMbIe B HeKOTOpbIX pa6oTax II0 HCnapHTenbHOMy IIOpIICTOMy OXJIaFKLIeHI'II'J 

yMeIIbIIIeHIIII K03@@IIuHeHTa TeIIJIOO6MeIIa C yBeJIHneHIIeM MHTeHCHBHOCTII IlCnapeHUR 
06baCHHIOTCII MeTOAIiKOt paWeTa. 

NOMENCLATURE Dimensionless numbers 
thermal diffusivity coefficient &, local Reynolds number 

(a = kc&; [Rez = (w&)] ; 
specific heat, at constant pressure; Pez, local Peclet number (Pez = (wzx/a)] ; 
heat-transfer coefficient ; FL, local Peclet number relative to mean 
vapour diffusion coefficient in moist integral velocity I& in a boundary layer 
air ; 
evaporation intensity or mass flow 

(& = &x/u) ; 
jjrU 

density; 
2, local Nusselt number [A%, = (h,x/k)]; 

heat conduction coefficient ; 
SC, Schmidt number [SC = (v/D)] ; 

characteristic body dimension; 
Pr, Prandtl number [Pr = (v/u)] ; 

total pressure of moist air (p = p1 + pz 
G% Gukhman number (Gu = Ta - Tb/Ta). 

= const.); Subscripts and Superscripts 
heat flux; a, surrounding medium (moist air); 
latent heat ; b, adiabatic saturation state; 
temperature “C; e, heat transfer with evaporation; 
absolute temperature “K; s, surface ; 
air velocity ; A local value depending on x co-ordi- 
boundary-layer thickness; nate ; 
dynamic viscosity coefficient ; 1, vapour ; 
kinematic viscosity coefficient 2, dry air; 

(v = T/P); ‘3 solid body; 
density; 0, heat transfer without evaporation. 
relative vapour concentration 

(PI0 = PI/P>; INTRODUCTION 

time ; HEAT and mass transfer with liquid evaporation 
distance of evaporation surface from from capillary-porous bodies is not only of 
body surface ; theoretical interest but of great practical import- 
relative air humidity. ante in engineering. 
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A heat- and mass-transfer process between a 
body surface and the surrounding medium is 
inseparably linked with that inside a capillary- 
porous body. 

Up to the present day opinion is divided on 
the subject of the physical mechanism of heat 
and mass transfer and also on the qualitative 
effect of mass transfer upon heat transfer. 

On the basis of the theory of gas injection 
into a boundary layer through a porous wall 
some investigators consider that with liquid 
evaporation the heat-transfer coefficient decreases 
with an increase in evaporation intensity and 
with vapour condensation it increases with 
condensation.? 

In the first case a transverse mass flow IS 
directed in an opposing sense to the heat flow 
and in the second case these flows have the same 
direction. 

The boundary-layer thickness then increases 
with evaporation (boundary layer “swells”) and 
this leads to a decrease in the heat-transfer 
coefficient. With vapour condensation a different 
process takes place which leads to an increase 
in the heat-transfer coe~cient with condensation 
rate. 

However, experiments on liquid evaporation 
from an open surface, made by Nesterenko [l], 
Sergeyev [23] and other investigators, showed 
that heat-transfer coefficients with evaporation 
are greater than h,, as compared with those 
without evaporation under other equal hydro- 
dynamic conditions and with the same tempera- 
ture differences. This difference (11, I?,) 
increases with a decrease in relative air 
humidity. 

When drying moist materials, the heat- 
transfer coefficients are greater than those of a 
dry body [3-61. 

In the process of transpiration cooling the 
results differ. In [7] the heat-transfer coefficients 
increase with evaporation rate whilst in another 
case, on the contrary, they decrease [S]. 

in the present paper an attempt is made to 
explain these contradictory results on the basis 
of the theory of submerging evaporation surface 
in capillary-porous bodies. 

7 It is assumed that heat necessary for evaporation is 
transferred to a body from the heated air by convection. 

POROUS COOLING WITH GAS INJECTION INTO 
BOUNDARY LAYER 

Porous cooling by gas injection Into :I 
boundary layer was calculated in detail by 
Eckert [9]. 

This calculation is based on the solution of ii 
system of differential heat- and mass-transfer 
equations for a flat porous plate in a laminar 
boundary layer of a binary gas mixture. 

The system of differential equations i\ 15 
follou s : 

(1) 

(3) 

(3) 

14) 

In this case thermal diffusion (the Soret effect) 
and diffusion heat conduction (the Dufour 
effect) are neglected as they are small. 

Boundary conditions are as follows : 

at _I 0. 1); 0, ,I’, II, ; I f% f’10 PII,\ (51 

at > _ x . H’,r it;,, t -- fir* PIi, P1ct (5. (6) 

Moreover, it was assumed that the linear 
transverse velocity changed along a surface 
(In r-direction) in inverse proportionality to L .\. 

Calculation results for a mass flow of injected 
gas which is directed from a body surface 
(analog of evaporation process) are given in 
Fig. I. 

From Fig. 1 it is evident that heat- and mass- 
transfer coefficients decrease with an increase 
in parameter Z. 

bvhere ,j, --~ pttb is the mass-transfer rate in the 
direction of a normal to the wall surface (in 
y-direction). Hence, the heat-transfer co- 
efficient decreases with an increase in the 

(71 
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FIG. 1. Relation between A/ha and parameter z with inert gas injection (Pr I= 0.7) into a 
boundary jayer according to Eckert’s data. 

transverse mass-flow rate. With 2 = 0.05 the 
ratio It//z0 is equal to 0.9 (see Fig. 1). 
Consequently, with Z = @05 the decrease in 
the heat-transfer coeEicient, k, compared with 
that for a dry body, h,, is 10 per cent. A decrease 
by a factor of two (h,QO = 0.5) corresponds to 
Z = 0.3. 

If the liquid-evaporation process is con- 
sidered to be the analog of a process of gas 
injection into a boundary layer, then under 
adiabatic evaporation conditions the parameter 
2 may be presented in another form. With 
convective heat transfer, evaporation intensity 
j, is equal to: 

When a plate is in a laminar fiow of moist air, 
the local Nusseit number, Nuz, is equal to: 

Nu, = &2/J&?, 

where As is the constant. 
Then, the parameter Z will be: 

z AZ c,At Az c&a =___ --_-.=--. 
Pr Y 

Pr -.;- Gu. (9) 

consequently, the parameter 2 is independent 
of the air velocity but it depends on a psychro- 

metric difference At(A.t = ta - tb) or on the 
Gukhman number. 

Let us do some approximate ~~~~atio~s for 
conditions: Q = 3075, Y = 579 keaykg, 
As = 0.33, Fr = 0.7. Then for Z = 0% the 
temperature drop will be equal to At = 260°C. 
Consequently, only at the temperature difference 
of At 3 260°C will a decrease in the heat-transfer 
coeficient be of order 10 per cent. 

Similar resuks were reported in [8] when a 
porous pIate was located in a flow of heated air. 
In these experiments the evaporation rate did 
not exceed 22-7 kg,lm”h. The Reynolds number 
ranged from IO4 to 2, IO” and air temperature, 
from 18 to 140°C. Evaporation occurred under 
adiabatic conditions. The temperature difference 
did not exceed 80°C. Hence, the transverse 
mass flow couId not influence the heat-transfer 
coefficient greatly- 

However, the authors established the foilowing 
relation for the mean Nusselt number: 

Nu = 0.00455 &O’fl ?!!A! -O-4 
i 1 r ’ (10) 

Thus, the heat-transfer coefficient decreases by a 
factor of more than three, 

Although the analysis of [8I is of a tentative . 
character, fin&e water evaporation from the 
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porous plate occurred in a turbulent flow:. the 
decrease in the heat-transfer coefficient. however. 
with increase in the temperature difference, &. 
proceeded due to other reasons which will he 
considered below. 

TRANSPIRATION COOLING 

The Krischer method [lo] is used to analyst 
a complex heat-transfer problem with transpira- 
tion cooling. The essence of this method lies 
in the following. 

If the influence of transverse mass flow is 
neglected, then the differential heat-transfer 
equation for a flat plate in a laminar boundary 
layer and at constant transfer coefficients may 
be written thus (see Appendix): 

Boundary conditions are taken in the form: 

at J q 0, r(.y,O) 7 tu const. (12) 

at s :m- 0, r(O.1,) ~- 1,1 conht. (13) 

at v--‘- c/J. t(s,x) ~- tr, ::: const. (14) 

The flow velocity, 11;. is a function of the co- 
ordinates; it is determined from equations (I-2). 
Following the Krischer method, ,1; is assumed 
to be constant and equal to the mean flow 
velocity in a boundary layer (nqX = t?r -- const.). 

In actual processes the velocity is constant 
only when a body is in a flow without friction, 
i.e. at a very small coefficient of internal friction. 

In case of viscous liquid the assumption 
(1~~ = Es I;- const.) is a certain method for 

solving a heat-transfer problem in a boundary 
layer. 

When an infinitely long plate is placed in a 
flow (I = s -_ x), the solution of differential 
equation (11) at boundary conditions (12-14) 
has the form: 

The local Nusselt number. Nu,, is equal to 

Differentiating solution (15) with respect to > 
and assuming _r == 0, we obtain: 

The mean Nusselt number on a surface is 

where Pe :~ (@J/a) is the mean Peclet number 
based on the mean velocity. 

To compare the result obtained with the 
known formulae for Nu for a plate in a laminar 
flow, it is necessary to determine c,,.. 

If the velocity profile u:JJ) is assumed to be a 
cubic parabola, then the mean velocity r~‘+ is 
equal to 

Then for humid air (PY m: 0.7) wz have 

2 
Y . i 11 ~~ 0.625 \, (Pe) =- O-74 I! (I-&). (20) 

\r 

This result differs from the known formula for a 
flat plate only by 20 per cent, NU =- 0.60 Ii( 

Thus, the assumption of constant velocity, 
Il’.r. when solving equation (I 1) yields satis- 
factory results. 

Our problem on transpiration cooling may 
be presented as follows (see Fig. 2). 

FIG. 2. Diagram of heat-transfer calculation with 
deepening of evaporation surface. 
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The differential heat-transfer equation for a 
boundary layer remains just the same [see 
equation (1 l)]. 

Boundary conditions are : 

at x = 0: t(O,y) = ta, at y = - [, t(x, - 5) = 

= tb = const. (21) 

at y + cc t(x, co) = ta (22) 

w4.4 at y=-5, -kk----_- 
aY 

k, w4 
r (23) 

In this case the temperature on the evaporation 
surface (y = - e) is assumed to be equal to the 
wet-bulb temperature. Owing to the small 
thickness of the boundary layer on the body 5 
the temperature distribution is assumed linear. 
Then boundary condition (23) may be written 
thus : 

ww - T + H[t(o,x) - tb] = 0 (23a) 

where H = (k’/kl) is some quantity analogous 
to a relative heat-transfer coefficient. 

The solution of differential equation (11) at 
boundary conditions (21-23) has the form 

t(x,y) - tb ---------~ 
fa - fb 

+ exp(Hy+H2!?)erfc[s)+d$)]. 

(24) 

Solution (15) is obtained from that of (24) as a 
particular case. 

If evaporation proceeds on a body surface 
(5 = 0), then H + co and the second term of the 
right-hand side of solution (24) will be equal to 
zero. 

Temperature on a body surface, t& = t(O,x)] 
will not be constant and changes along the 
x-axis. 

@,O) - tb 
T-Y = exp kz) erfc(dg). (25) 

Near the edge of a plate (x = 0) temperature of a 
body surface, ts, is equal to that of air (ts - ta) 
and at a considerable distance from the edge 
(x -+ co) the temperature of a body surface is 

equal to the wet-bulb temperature (ts - tb). 

Consequently, the temperature differ- 
ence At(At = ta - ts) changes from zero 
near the plate edge to a constant value 
(ta - tb). 

This is a very important fact which defines heat 
and mass transfer when submerging the evapora- 
tion surface deep into a body. 

If evaporation occurs on a body surface, then 
under adiabatic conditions temperature of the 
body surface is constant and equal to the 
wet-bulb temperature. 

From the theory of heat transfer it is known 
that if temperature difference increases along the 
flow, then the heat-transfer coefficient is greater 
than that with constant temperature difference. 

Consequently, when deepening an 
evaporation surface, the heat-transfer 
coefficient is greater as compared with 
that with evaporation on a surface. 

If to a first approximation it is assumed that 
the heat-transfer coefficient with evaporation 
on a body surface is equal to that of a dry body, 
then with transpiration cooling, when deepening 
the evaporation surface, the heat-transfer co- 
efficient will be greater in comparison with that 
of a dry body. Consider it in detail. 

The local Nusselt number, Nu,, is equal 

Nux = [ta - ;(x,o)] ay = at(x,o) y/(Pez)K 

exp K2 erfc K(1 - exp K2 erfc K]-l (26) 

where K is a dimensionless parameter 

(27) 

Designate 

f(K) = 2/(r) K exp K2 erfc K, 

then we have 
(28) 

N = d(4 NZlx = f(K) 
1/m 1 - l/[Kz/(v)Jf(f)’ (29) 

(17) is obtained from (29) as a specific case. 
If evaporation occurs on a body surface (6 = 0, 
K = co), then N = 1, since f(K) = 1. 

Thus, the dimensionless quantity N charac- 
terizes a relative increase in NuZ with liquid 
evaporation from a capillary-porous body at 
some depth 5, as compared with evaporation 
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on a body surface. In Fig. 3, N is plotted versus It is quite natural that at small values of f the 
K, from which it is seen that N decreases with an temperature of a body surface cannot he 
increase in K (at K ~~. x N. . I). measured in practice. Thermocouples embedded 

Over a range of values of K from 0.1 to 5.0 on a “surface” of a body in fact show the wet- 
(0.1 K . 5.0) the relation N -7 F’(K) may be bulb temperature TV. The heat transfer coefficient 
aunroximated bv the following formula is, therefore. calculated as the relation of J 

heat Now, y+ to the psychrometric differcncc 
130) ifn fii 1. 

From the theory of iiquid transfer in capillary- 
porous bodies it is known that for the first lrrb y , 

I, - 11, 
(31) 

approximation 5 is proportional to a relative 
psychrometric difference (r, - Tt,)/Tn. 

In this case the local Nusselt number. NICK!, 
will lx 

I I i I -- --! 
0 2 3 4 

K 

FIG,. 3. Relutmn between coefficient iv and parameter 
K 

Then the dimensionless parameter K will be 
inversely proportional to (m Tt,)l~~ or to the 
Gukhman number (I( i l/Gu). Iience, it 
follows that N will be dn-ectly proportional to 
Gu”.‘~( N - GzP12). This obtains in some works 
on heat transfer with drying [2-51. 

It is of interest to determine t roughly. For 
porous ceramics used in [2] k 1: O-2 kcal/mh degC 
and Re =. 6*104, Pr :- 0.7. Then, for x - 20 mm 
K z-Z i-5 and 5: = 0.5 mm. In this case according 
to the plot in Fig. 3 the coefficient IV y= 1.25, 
which corresponds to an increase in the heat- 
transfer coefficient, h,, by 25 per cent as compared 
with that for a dry body (he//z0 = 1.25) if heat 
transfer with evaporation on a body surface is 
considered to be identical with that of a dry body. 

For K == O-25, 8 = 3 mm and N 7 l-55. 
Hence, the heat-transfer coefficient, I+, is 
approximately greater by 55 per cent than hc. 

After simple transformations wc have: 

where Nt) is a coefficient sho%ing a telativo 
change in N&b and, consequently, II,+ due to the 
deepening of an evaporation surface. 

From the plot Nb =f( K) depicted in Fig, 4 
one can see that the coefhcient K increases with 
Ni,. 

I.0 

0,9 

04 

0.7 

0.6 

iv* 0.5 

K 
FIG. 4. Relation between coefftcient Nh and parameter 

K. 
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Since K is inversely proportional to the 
Gukhman number, N&b will decrease with an 
increase in Gu and this is reported in [8]. 

Over a small range of change in K the relation 
Nb =_f(K) may be represented by the formula 

h$, = BKm (34) 

where B and 171 are constants (1 > IIZ > 0). 
Over the range (0.3 < K < 1.5) B = 0.73 and 

m = Oe46. In the range (1.5 < K < 5) B = 0.80 
and m = O-15 (see Fig. 4). Hence, in the range 
(0.3 < K -c 1.5) we have 

Nb zz 0.73 KO.4'3 = Bl (3-0.4'3 

where Bl is the constant. 

(35) 

This formula by its structure is close to 
equation (10). It may be noted that the authors of 
[8] treated their experimental data using the 
Gukhman number. After this they obtained the 
following dependence : 

NU 
&$.a = 0.00695 Gu-O.~. (36) 

It should be noted that the comparison of the 
above formulae is of a conditional character, 
since [ depends on the capillary-porous structure 
of a body, its physical-chemical properties and 
in general case is a function of the parametric 
number (T&b). However, equations (33), (34), 
(10) and (36) cogently show that in [8] evapora- 
tion proceeded at some depth from a body 
surface. Decrease in the heat-transfer coefficient 
due to increase in the evaporation rate, observed 
in experiments, is explained not by the effect of a 
transverse mass flow on boundary-layer thick- 
ness but by the method of calculation of the 
heat-transfer coefficient according to (31). 

Data obtained in [l l] may be cited as a second 
example. With drying of gypsum plates (200 x 
50 x 25 mm) at air temperature ta = 33”C, 
relative humidity 4 = 20 per cent and air 
velocity from 1 m/s to 5 m/s (0.9 x lo4 < Re < 
3.5 x 104) the following formula? may be 
obtained 

Nu = 7.25 Re0’4. (37) 

The value of the exponent of Re may be explained 

-- 
t Value, equal to l/s, where s is the evaporation surface 

([l/s) was taken as the characteristic dimension 1. 

by the effect of the parameter K. Over the range 
(1.5 < K < 5.0) the local number, N&b is 
equal to 

Rezo.43. (38) 

The exponent of Re, (n = 0.43) is close to that 
of Re in (37). 

EXPERIMENTS ON TRANSPIRATION COOLING 

At the Heat and Mass Transfer Institute of the 
B.S.S.R. Academy of Sciences, Shultnan carried 
out experiments on transpiration cooling [ 12-131. 
A ceramic hollow cylinder (250 mm in height 
and 22 mm in internal radius) in the shape of a 
tumbler is taken as a sample. 

A porous ceramic possesses a monocapillary 
structure (capillary radius, corresponding to a 
maximum of a distribution curve for pores, is 
equal to 0.9 t*), its total porosity is 70 per cent. 
Experiments were calculated at air temperatures; 
7O”C, 100°C and 130°C. The air velocity in the 
wind tunnel was from 6.0 to 150 m/s. Reynolds 
numbers ranged between 2. lo4 and 7~10~. 

Two grooves (2.5 mm in depth and 2 mm in 
width) were made on the internal wall of the 
tumbler. The distance between their axes was 
equal to 14.5 mm. A cardboard moisture-proof 
small boat was inserted into these grooves and 
fixed by glue. After heating and drying, the 
sealing of the boat and a great cavity of an 
experimental body was checked. Thermo- 
couples were imbedded along the external 
contour and along the generating line of the 
porous cylinder to measure body temperature. 

The lower semi-spherical part of the tumbler 
was soaked with water-proof varnish. Therefore, 
water evaporation proceeded only from the 
lateral cylinder side. To approach experimental 
conditions to a plane problem, the porous 
cylinder had a lengthening device made of 
cardboard. Water was fed into the boat and 
glass cavity from measuring burettes with scale 
division equal to 0.05 mm. The experimental 
body (porous cylinder) was placed in a wind 
tunnel, described in [5], normal to the air flow. 
The cylinder was filled with heated water. A 
specific heat flow for the given portion of the 
cylinder surface (q = rj,) was determined by 
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water rate in the boat. The boat axis is estab- 
lished at a given distance from the front critical 
point by turning a porous cylinder at a certain 
angle according to the limb. Measurements were 
made over the range of the angle 0 between 0’ 
and 180” through each 15’ starting from the 
front critical point. Evaporation occurred under 
adiabatic conditions and the thermocouples, 
imbedded near the surface of the porous 
cylinder, showed temperatures equal to that of 
the wet-bulb (T, T,,). The heat-transfer 
coefficient was calculated from (36). i.e. the 
coefficient of heat transfer from air to an 
evaporating surface through the air boundary 
layer and a body layer was determined. 

Experimental values of the parameter Z 
depending on the angle 6’ are shown in Fig. 5. 
From Fig. 5 one can see that it does not exceed 
0.04 (Z > 0.04). Hence the influence of a trans- 
verse mass flow on heat transfer is negligible. 

For all the temperatures (70 . 100“ and 130°C) 

k 
0.03 + 

Z E l t 

0.02 _. 
+ 

0.0 I 

0 
_ 

--- 
T 

\ * 

. 

+i 

% 

.j_ 

__ 

, 

FIG. 5. Relation of parameter z and angle tl for FIG. h. Relation between local Nusselt number and 
various temperatures of air flow. and-angle 0. 

the relation between the local numbers N&b and 
RcL are close to a parabolic one, i.e. N&t, is 
directly proportional to \,‘Re,. The experimental 
data, treated as a plot of Nuzb/xlRex versus Gu. 
showed that N&b/l/ Re, is inversely proportional 
to GzP. 

Fig. 6 gives the relation between NU+t,i\, Rer. 
Gu -We and the angle 0. 

Designate the dimensionless co-ordinate ,Y 
by f+(.\." ~~: x/d) where .Y is the arc length of the 
external cylinder contour with the central angle 
rj. calculated from the front critical point 
(.I- $IH). cl is the cylinder diameter. 

Then. experimental data depicted in Fig. h 
are described by the following empirical formula: 

NW 2.0 [exp ( -~-2.46 s*) i- 0.2 exp ( -55 AI*)] 

v,‘l Re,,)Ciu--” 4. t39) 

From formula (39) it follo\ns that the coefficient 
/I.~!, decreases with an increase in the Gukhman 
number. Theheat-transfercoefficient,h,.increases 
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with Gu. There is a simple relation between the 
coefficients hz and hzb: 

To the first approximation the depth of 
position of the evaporation surface 5 is propor- 
tional to Gu but the coefficient hzb decreases with 
an increase in Cu. 

In Fig. 7 the average Nusselt numbers, Nub, 
over the cylinder surface for three temperatures 
are plotted versus Re. Values of Nub for dry heat 
transfer [14] are also given in Fig. 7. From Fig. 7 
it follows that the Nusselt numbers for dry heat 
transfer coincide with those for moist heat 
transfer at an air temperature of 100°C (Nu, = 
Nub). At air temperature 130°C the values are 
smaller and at temperature 70°C are greater, as 
compared with data in [14]. More intense heat 
transfer between a moist porous body and air 
flow is explained by other reasons. Volumetric 
evaporation connected with the dynamic 
character of sorption and desorption processes is 
one of the reasons for increased heat and mass 
transfer. 

The essence of this hypothesis lies in the fact 

I I I I II I 

.:i 
4 6 8 10 2 

Re x104 

FIG. 7. Relation between mean Nusselt number Nub 
and Re at temperature of air flow : 1. 7O”C, 2. lOO”C, 
3. 13O”C, 4. dry heat transfer according to Kruzhilin 

and Schwab’s data [14]. 

that fine liquid drops enter a boundary layer. A 
process of nucleate vapour condensation and 
interaction between an air flow and body 
surface is the basic reason of droplet separation 
from a body surface. According to the dynamic 
adsorption theory [15] the evaporation process is 
a dynamic process of desorption and sorption. 
Liquid molecules do not only leave the evapora- 
tion surface but continuously return back to it, 
forming condensation nuclei. The evaporation 
rate is proportional to the difference between 
molecular flows leaving the surface and returning 
back to it. Fedyakin’s investigations [16] 
showed that condensation does not occur 
uniformly along a body surface but on some 
portions (nuclei). In addition, incomplete wetting 
of a body surface proceeds over a condensation 
portion. On this portion drops are formed 
which are carried away by air flow into a 
boundary layer as they are less firmly connected 
with the body. The nuclear condensation and 
evaporation process breaks the structure of the 
boundary layer adjacent to a wall and this also 
leads to intensification in heat and mass transfer. 

Evaporation of drops in a boundary layer is 
called volumetric evaporation; it is a vapour 
source and a negative heat source in the equations 
of heat and mass transfer of a boundary layer. 

With volumetric evaporation the right-hand 
side of equation (4) should have the additional 
term, II, where 1, is the volumetric vapour 
source (kg/m3h). The right-hand side of equa- 
tion (3) should embody the new term rl, which 
is a heat sink (kcal/m3h). In [17] it is reported 
that volumetric evaporation in a boundary layer 
is characterized by the Gukhman number. Thus, 
the Gukhman number characterizes not only 
the effect of deepening an evaporation surface 
inside the body upon heat and mass transfer in 
a boundary layer but also upon a process of 
volumetric evaporation of drops in a boundary 
layer. 

From Fig. 7 it follows that at an air tempera- 
ture 70°C heat-transfer intensification due to 
volumetric evaporation will be considerably 
greater, as compared with the effect of the 
deepening of the evaporation surface (value 6 
is small). Values of Nub are therefore greater 
than the corresponding values of Nu,. At a 
temperature of 100°C the influence of these two 
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effects is approximately the same. Therefore, 
the numbers NuO and Nub coincide. At a tempera- 
ture of 130°C the effect of the deepening of the 
evaporation surface suppresses that of ordinary 
evaporation, which leads to the relation 
Nllt, < Nuo. 

The basic conclusion of our work is as follows : 
heat and mass transfer of capillary-porous 
bodies within a surrounding medium is the 
interconnected heat- and mass-transfer process in 
a boundary layer of air and in that of a capillary- 
porous body. This process may be studied with 
advantage provided that it is considered as a 
single whole, as the whole complex of phenomena 
in their interaction. 

Neither conclusions, based on analogy, nor 
quantitative laws based on the principle of 
additivity of relations, corresponding to practical 
phenomena, are possible. Correct quantitative 
relations should correspond to the actual 
process. 
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Equation (11) is 8 particular case of equafiun 
(3) when the transverse velocity is zero (wW = U). 
Equation (3) may be solved if we assume that 
Ws = wx = const. and W, = j,Jp = const, Heat 
transfer due to di@usion is neglected, The 
solution of equation (3) with boundary con- 
ditions (12-14) is of the form 

From the above solution the local Nusselt xxum+ 
ber is obtained 

p+= l!.gL”” 
Pa 

is the local Peelet number for transverse transfer. 
If the effect of convective heat transfer along y is 
neglected (Pez = 0), from equation (II) formuht 
(17) is obtained. If the evaporation rate does not 
exceed 20 kg/m2h (f < 20), then for a wet pl&e 
in a fan&&r ati flow (Pr = O-7) Pez < 25 when 
Re < 8-W. Hence the second term of formula 
(II) is less than 5 per cent in relation to the fmt 
term, and the value of exp (-PeF/4zS) is 
practically unity. 

The solution of equation (3) with boundary 
conditions (21-23) is of the form 

From equation (III) the solution of equation 
(24) 3s ubtaained if we assume that tvLv = 0. 

From equation @II) the following formulae 
are obtained 

x exp (A? - BK) erfo (K - 4 B) (v) 

The value Mb is 

If the effect of transverse mass transfer is neg- 
lected (B = 0), from formulae (IV) and (VII) we 
obtain formulae (23) and (33) respectively since 

When deepening of the evaporation surface does 
not occur f[ = 0, X = CQ), we obtain from 
formulae (IV) and (V) 

i.c, vye obtain formufa @I) since 

Over the range of K(@5 < K < 5), the above 
values of Re and the evaporation rates j8 the 
value of Q - (B/K) < O-06. Thus for approxi- 
mate calculations which are sufficient for en- 
gineering practice the effect of transverse mass 
lIow may be neglected. 
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Abstract-The effect of transverse mass flow on heat transfer in a moist capillary-porous plate with 
laminar fiow is anaiysed. The laws of heat and mass transfer wtth irqutd evaporation from capiilary- 
porous bodies are estabitshed. It is shown that when an evaporating surface is submerged heat-transfer 
coefficients are greater than those with evaporation from body surfaces. 

Decrease in the heat-transfer coefficient with evaporation intensity, reported in some works on 
transpiration cooiing, can be explained by the methods of calculation. 

R&urn&On a etudie i’effet d’une injection transvcrsalc cur les Cchanges thermtques d*unc plaque a 
porosite capiiiatre, humide, piacee dans un ecoulement laminaire. Les iois du transport de masse et dc 
chaleur avec evaporation ont et6 Btablies. Les coefficients de transmission de chaleur sont plus grands 
lorsque la surface d’evaporation est inclusc que lorsquc i’ev-nporation se fait St la surface tlu corps. 

L’accroissement du coefficient d’&hangc thermique avcc l’mtensite de l’evaporation, note dan\ 
queiques travaux \ur ic refro&sement par injection. peut s’expiiquer par lc calcul. 

Zusammenfassung--Der E~nfluss cineb Masscnqucrstrom~ auf den WBrmeubergang an cmcr feuchten 
kapiliarpordsen Platte bei Laminarstromung wird analysicrt. Es werden Gleichungen emgeftihrt fur 
den W&me- und Stofftibergang an porbsen Korpern bei Verdampfung von Fltissigkeit. Die Warme- 
tibergangskoeffizienten an einer in die Fliissigkeit volistandrg clngetauchten, dampfbildenden Ober- 
flache sind grosser ais die. nichteingetauchtcr dampfblidender Oberflachen. 

Die Vergrosserung des W%rmetibergangskoeffiztenten mit der Verdampfungsintensttat, von der in 
Arbeiten uber Schwitzktihlung berichtet wird. l&t sich an Hand der Rechnung erklkren. 


